Monday, September 7, 2015

Page 352

Problem 2

Problem. Solve $e^{\ln 3 x}=24$ for x.
Solution. The functions e^{x} and $\ln x$ are inverses, so $e^{\ln 3 x}=3 x$. Then the equation becomes $3 x=24$ and the solution is $x=8$.

Problem 9

Problem. Solve $\frac{800}{100-e^{x / 2}}=50$ for x.
Solution.

$$
\begin{aligned}
\frac{800}{100-e^{x / 2}} & =50 \\
800 & =50\left(100-e^{x / 2}\right) \\
16 & =100-e^{x / 2} \\
e^{x / 2} & =84 \\
\frac{x}{2} & =\ln 84 \\
x & =2 \ln 84 \\
& \approx 8.8616 .
\end{aligned}
$$

Problem 15

Problem. Solve $\ln \sqrt{x+2}=1$ for x.
Solution.

$$
\begin{aligned}
\ln \sqrt{x+2} & =1 \\
\sqrt{x+2} & =e^{1}=e \\
x+2 & =e^{2} \\
x & =e^{2}-2 \\
& \approx 5.389 .
\end{aligned}
$$

Problem 27

Problem. Match the equation $y=C\left(1-e^{-a x}\right)$ with the correct graph.
Solution. We know that $e^{-a x}$ is positive and approaches 0 as x approaches ∞. Therefore, $1-e^{-a x}$ must approach 1 from below as $x \rightarrow \infty$. On the other hand, as $x \rightarrow-\infty$, $1-e^{-a x}$ approaches $-\infty$. Multiply by C and the graph matches (a).

Problem 28

Problem. Match the equation $y=\frac{C}{1+e^{-a x}}$ with the correct graph.
Solution. We know that $e^{-a x}$ is positive and approaches 0 as x approaches ∞. Therefore, $1+e^{-a x}$ must approach 1 from above. So $\frac{C}{1+e^{-a x}}$ must approach C from below as $x \rightarrow \infty$. On the other hand, as $x \rightarrow-\infty, e^{-a x}$ approaches ∞, so $\frac{C}{1+e^{-a x}}$ must approach 0 . The graph matches (b).

Problem 33

Problem. Find the derivative of $f(x)=e^{2 x}$.
Solution. Use the Chain Rule.

$$
\begin{aligned}
f^{\prime}(x) & =e^{2 x} \cdot 2 \\
& =2 e^{2 x}
\end{aligned}
$$

Problem 35

Problem. Find the derivative of $y=e^{\sqrt{x}}$.
Solution. Use the Chain Rule.

$$
\begin{aligned}
y^{\prime} & =e^{\sqrt{x}} \cdot \frac{1}{2 \sqrt{x}} \\
& =\frac{e^{\sqrt{x}}}{2 \sqrt{x}} .
\end{aligned}
$$

Problem 37

Problem. Find the derivative of $y=e^{x-4}$.

Solution. Use the Chain Rule.

$$
\begin{aligned}
y^{\prime} & =e^{x-4} \cdot 1 \\
& =e^{x-4} .
\end{aligned}
$$

Problem 41

Problem. Find the derivative of $y=x^{3} e^{x}$.
Solution. Use the Product Rule.

$$
\begin{aligned}
y^{\prime} & =3 x^{2} \cdot e^{x}+x^{3} \cdot e^{x} \\
& =\left(x^{3}+3 x^{2}\right) e^{x} .
\end{aligned}
$$

Problem 45

Problem. Find the derivative of $y=\ln \left(1+e^{2 x}\right)$.
Solution. Use the rule for logarithms that says that $\frac{d}{d x}(\ln f(x))=\frac{f^{\prime}(x)}{f(x)}$ and get

$$
y^{\prime}=\frac{2 e^{2 x}}{1+e^{2 x}} .
$$

Problem 49

Problem. Find the derivative of $y=\frac{e^{x}+1}{e^{x}-1}$.
Solution. Use the Quotient Rule.

$$
\begin{aligned}
y^{\prime} & =\frac{\left(e^{x}\right)\left(e^{x}-1\right)-\left(e^{x}+1\right)\left(e^{x}\right)}{\left(e^{x}-1\right)^{2}} \\
& =\frac{e^{2 x}-e^{x}-e^{2 x}-e^{x}}{\left(e^{x}-1\right)^{2}} \\
& =-\frac{2 e^{2 x}}{\left(e^{x}-1\right)^{2}} .
\end{aligned}
$$

Problem 51

Problem. Find the derivative of $y=e^{x}(\sin x+\cos x)$.

Solution. Use the Product Rule.

$$
\begin{aligned}
y^{\prime} & =e^{x}(\sin x+\cos x)+e^{x}(\cos x-\sin x) \\
& =2 e^{x} \cos x
\end{aligned}
$$

