Monday, September 7, 2015

Page 352

Problem 2

Problem. Solve $e^{\ln 3x} = 24$ for x.

Solution. The functions e^x and $\ln x$ are inverses, so $e^{\ln 3x} = 3x$. Then the equation becomes 3x = 24 and the solution is x = 8.

Problem 9

Problem. Solve $\frac{800}{100 - e^{x/2}} = 50$ for x. Solution.

$$\frac{800}{100 - e^{x/2}} = 50$$

$$800 = 50(100 - e^{x/2})$$

$$16 = 100 - e^{x/2}$$

$$e^{x/2} = 84$$

$$\frac{x}{2} = \ln 84$$

$$x = 2\ln 84$$

$$\approx 8.8616.$$

Problem 15

Problem. Solve $\ln \sqrt{x+2} = 1$ for x. Solution.

$$\ln \sqrt{x+2} = 1$$
$$\sqrt{x+2} = e^1 = e$$
$$x+2 = e^2$$
$$x = e^2 - 2$$
$$\approx 5.389.$$

Problem 27

Problem. Match the equation $y = C(1 - e^{-ax})$ with the correct graph.

Solution. We know that e^{-ax} is positive and approaches 0 as x approaches ∞ . Therefore, $1-e^{-ax}$ must approach 1 from below as $x \to \infty$. On the other hand, as $x \to -\infty$, $1-e^{-ax}$ approaches $-\infty$. Multiply by C and the graph matches (a).

Problem 28

Problem. Match the equation $y = \frac{C}{1 + e^{-ax}}$ with the correct graph.

Solution. We know that e^{-ax} is positive and approaches 0 as x approaches ∞ . Therefore, $1 + e^{-ax}$ must approach 1 from above. So $\frac{C}{1+e^{-ax}}$ must approach C from below as $x \to \infty$. On the other hand, as $x \to -\infty$, e^{-ax} approaches ∞ , so $\frac{C}{1+e^{-ax}}$ must approach 0. The graph matches (b).

Problem 33

Problem. Find the derivative of $f(x) = e^{2x}$. Solution. Use the Chain Rule.

$$f'(x) = e^{2x} \cdot 2$$
$$= 2e^{2x}.$$

Problem 35

Problem. Find the derivative of $y = e^{\sqrt{x}}$. Solution. Use the Chain Rule.

$$y' = e^{\sqrt{x}} \cdot \frac{1}{2\sqrt{x}}$$
$$= \frac{e^{\sqrt{x}}}{2\sqrt{x}}.$$

Problem 37

Problem. Find the derivative of $y = e^{x-4}$.

Solution. Use the Chain Rule.

$$y' = e^{x-4} \cdot 1$$
$$= e^{x-4}.$$

Problem 41

Problem. Find the derivative of $y = x^3 e^x$. Solution. Use the Product Rule.

$$y' = 3x^2 \cdot e^x + x^3 \cdot e^x$$
$$= (x^3 + 3x^2)e^x.$$

Problem 45

Problem. Find the derivative of $y = \ln (1 + e^{2x})$. Solution. Use the rule for logarithms that says that $\frac{d}{dx}(\ln f(x)) = \frac{f'(x)}{f(x)}$ and get

$$y' = \frac{2e^{2x}}{1 + e^{2x}}.$$

Problem 49

Problem. Find the derivative of $y = \frac{e^x + 1}{e^x - 1}$. Solution. Use the Quotient Rule.

$$y' = \frac{(e^x)(e^x - 1) - (e^x + 1)(e^x)}{(e^x - 1)^2}$$
$$= \frac{e^{2x} - e^x - e^{2x} - e^x}{(e^x - 1)^2}$$
$$= -\frac{2e^{2x}}{(e^x - 1)^2}.$$

Problem 51

Problem. Find the derivative of $y = e^x(\sin x + \cos x)$.

Solution. Use the Product Rule.

$$y' = e^x(\sin x + \cos x) + e^x(\cos x - \sin x)$$
$$= 2e^x \cos x.$$